
Securing Confidential VMs in Public Clouds
A S M Asadujjaman∗, Davi Pontes∗, Eduardo Falcão†, Andrey Brito∗
∗Federal University of Campina Grande, Campina Grande, Paraı́ba, Brazil

Email: {a.asadujjaman, davi.pontes}@lsd.ufcg.edu.br, andrey@computacao.ufcg.edu.br
†Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil

Email: eduardo@dca.ufrn.br

Abstract—Cloud providers and CPU vendors are
working together to deliver the promise of Confi-
dential Computing through the Confidential Virtual
Machine (CVM) offerings. However, the steps required
to verify the authenticity of CVMs are still unclear.
Technical specifications are difficult to follow, and the
implementations by the cloud providers are incomplete.
Currently, there is no serviceable procedure to ensure
desired security properties for CVM users. In this work,
our goal is to secure confidential VMs by facilitating
their authenticity verification and addressing security
issues arising from their incomplete implementations.
To that end, firstly, we identify a set of necessary
attestation properties and formulate guidelines to verify
them. Secondly, we show why the current offerings
are insufficient to guarantee security and what else is
needed. In that regard, as Intel has released its CVM
technology recently, we focus our attention on the Intel
TDX CVM offerings. After analyzing and evaluating
Intel TDX services from major cloud providers, we
have identified the possibility of a malware injection
attack and designed a solution to detect it. Through
experiments, we show that our solution does not add
any significant overhead.

I. INTRODUCTION

Confidential computing is a promising technol-
ogy to enable businesses to continue harvesting the
benefits of cloud computing while providing them
with the ability to ensure the confidentiality and
integrity of their data. Confidential computing offers
hardware-based encryption and integrity protection
mechanisms to protect data “in use”. Thus, businesses
now hope that they can be fully protected. The latest
innovation in the confidential computing space is the
Confidential Virtual Machine (CVM), where the main
memory of the VM is protected through encryption
and integrity preservation mechanisms. Users can use
a process called remote attestation in which various
attestaion properties are matched against their ex-
pected values to ensure their VM is securely running
on an authentic hardware platform [9].

However, CVM is a complex new technology
that is implemented differently by individual CPU
vendors. To compound the complexity, various cloud

providers have adopted the technology differently.
Moreover, crucial features to ensure the integrity
of the CVMs are still missing in the current cloud
offerings. Without proper verification, the CVMs may
not provide the expected protection. As reviewed in
Section VI, no existing work addresses these prob-
lems. In the following, we illustrate these problems
with two motivating examples.

Motivating Example 1. As shown in Figure 1a,
AMD SEV-SNP specifies forty attestation properties
as part of its attestation report. To further increase the
number of fields to verify, many of these properties
are a combination of multiple fields (e.g., the Policy
property is a collection of twelve individual fields).
Not only are there many fields to understand and
verify but also, information about how to obtain an
expected value to match these fields against is not
easy to find.

Motivating Example 2. As shown in Figure 1b,
Intel TDX is designed to allow a Relying Party to
perform remote attestation of CVMs with the help
of attestation quotes. The attestation quotes carry a
structure known as attestation report that includes
measurements of various stages of the boot process
that Intel TDX stores at its registers: MRTD, RTMR0,
RTMR1, RTMR2, and RTMR3. The CVM was ini-
tialized from an image that contains a malicious
application named “SpyWare”. However, as per our
evaluation of the latest CVMs deployed on major
cloud providers, applications are not measured into
any of these measurement registers. Thus, when the
Relying Party forwards the attestation report to the
Attestation Verification Server, the CVM passes the
attestation even though it contains a malicious pro-
gram. To make matters more challenging, application
measurement is a dynamic property that continuously
changes as new applications are launched. This makes
remote attestation difficult to achieve by comparing
the measurement against a pre-calculated value.

In this paper, our goal is twofold. Firstly, we aim to
provide the CVM users with a set of attestation prop-

Version

Guest_SVN

Policy

1:

2:

3:

Family_ID

Image_ID

VMPL
Signature_Algo

Current_TCB
.
.
.

Signature

4:

5:

6:

7:

8:

40:

Microcode
SNP

TEE
Bootloader

Ciphertxt_Hid

RAPL_DIS
MEM_AES_256_XTS

.

.

.

How to appropriately apply all these properties?

.

.

.

Parent Property

Child Property

(a)

Relying Party

Quoting Enclave

Host VMM

CPU

Firmware

Settings

Config, Kernel

App1, App2, ..,
SpyWare

GRUB

TDX Module

rtmr2

rtmr1

rtmr0

mrtd

Provisioning Certification
Enclave

Baremetal Server
Attestation

Verification Server

Attestation Service

Policy:

(b)
Fig. 1: Motivating examples: a) SEV-SNP CVMs’ attestation reports have 40 properties where many of them have
additional child properties, b) Remote attestation in Intel TDX uses an attestation report that includes measurement
registers. Applications are not currently measured into these registers in the CVM offerings from major cloud providers
allowing the possibility of malicious application injection.

erties and a guideline on how to verify those proper-
ties. We present the properties in a platform-agnostic
way to simplify the complexities of individual CPU
manufacturers’ designs. Secondly, we aim to secure
CVMs against any potential attack due to implemen-
tation deficiencies in the current CVM offerings. Pro-
viding security against these implementation issues
requires considering vendor-specific design and due
to space limitations, we cannot address both Intel
and AMD in this paper. To that end, as the majority
of the processors worldwide are from Intel [7] and
they released their CVM technology just recently in
2023, we direct our focus on their CVM technology,
Intel TDX. In particular, we provide a solution to the
malicious application injection problem as depicted in
Motivating Example 2 above. As part of the solution,
we enhanced the Integrity Measurement Architecture
(IMA) subsystem of the Linux kernel and developed
a kernel-mode driver. Experimental results show that
our solution does not add any significant overhead
to the startup time of the kernel. In addition, we
point out the gaps in existing Intel TDX offerings
by the major cloud providers. In summary, our major
contributions are as follows:

1) We identify a set of necessary attestation prop-
erties that can authenticate confidential VMs
and formulate guidelines on verifying them
(Section III).

2) We propose a solution to secure confidential
VMs against malicious application injection
attacks (Section IV).

3) We investigate CVM offerings from the major
cloud providers and report missing security
features necessary to secure the CVMs (Sec-
tion IV).

4) We develop software (modification of the Linux
kernel and a Python script) to defend against
malicious application injection attacks. We
show how users can develop their customized
kernel to interface with the Intel Application
Binary Interface (ABI), and thus, gain control
of the remote attestation process (Section V).

5) We experimentally evaluate our proposed so-
lutions to show they do not add significant
overhead (Section V).

II. BACKGROUND

A. Overview of Confidential Computing
Confidential computing secures “data in use” for

cloud tenants while considering that the cloud plat-
form may be under the control of adversaries. This
assumption allows the cloud tenant to exclude most
parts of the cloud platform from having to be trusted
(e.g., hypervisors and cloud administrators). In con-
fidential computing, there are two types of isola-
tion [11]: 1) process-level isolation (e.g., Intel SGX)
and 2) VM-level isolation (e.g., Intel TDX and AMD
SEV-SNP). In the former, only the application that
runs inside a so-called Enclave is trusted, while the
operating system remains outside the Trusted Com-
puting Base (TCB). The process-level isolation re-
quires developing applications separately to be aware
of the Enclave. To overcome this limitation, VM-level

isolation techniques have recently emerged where
existing applications can run without modification.
In VM-level isolation (i.e., CVM), the entire VM is
inside the TCB. Besides the VM, only the hardware
or firmware from the CPU vendor (e.g., Intel, AMD,
ARM, etc.) is trusted [3], [5]. In this paper, we only
cover VM-level isolation technologies.

B. Intel TDX

Intel TDX is the CVM technology from Intel [5].
It uses a dedicated CPU mode, called SEAM mode,
to host a piece of software called the TDX module,
responsible for serving the role of a trusted micro-
hypervisor for CVMs. This design allows it to keep
the traditional fully fledged third-party hypervisors
out of the trusted computing base while still allowing
them to manage CVMs.

C. AMD SEV-SNP

The CVM technology from AMD is known as
SEV-SNP [6]. It uses a dedicated sub-system called
secure-processor (AMD-SP), which hosts firmware
that assumes the role of a micro-hypervisor (similar
to the Intel TDX module).

D. Virtual Trusted Platform Module (vTPM)

A TPM is traditionally a hardware device that
aids in securing a machine in several ways, such
as providing secure storage for cryptographic keys
and integrity measurements [2]. In the context of
CVMs, TPMs are usually implemented in software
and, are called virtual TPMs or vTPMs. One of
the most useful features of a vTPM is its Platform
Configuration Registers (PCRs).

E. Integrity Measurement Architecture (IMA)

One of the technologies that enable runtime in-
tegrity measurement in Linux is the Integrity Mea-
surement Architecture (IMA) [18]. IMA is respon-
sible for calculating the hash of certain files as
soon as they are read. The exact files for which
IMA calculates hashes are determined by its policy.
Besides calculating the hashes, IMA also stores them
to a TPM (or vTPM, depending on the platform).

III. VERIFYING ATTESTATION PROPERTIES

To help users identify and verify the necessary
attestation properties, our approach is as follows.
Firstly, we design a set of generic attestation prop-
erties and map them to CPU vendor-specific coun-
terparts. Secondly, we provide guidelines on how to
verify each category of attestation properties.

A. Attestation Properties Design

In Table I, we list our designed property names
(column 1) along with the technology-specific coun-
terparts (Intel TDX-specific terms in column 2 and
AMD SEV-SNP-specific terms in column 4). These
properties are designed to form a chain of trust that
starts with a component whose authenticity is guaran-
teed by hardware mechanisms (e.g., a secured chip)
or digital signatures. This chain of trust is designed
to continue up to the final layer of the software stack.
Our identified properties are as follows:

Initial Measurement. We define initial measure-
ment as a set of hashes of corresponding firmware
components where: 1) the first component is loaded
by an unmeasured component whose credibility is
ensured by the CVM vendor (e.g., code that is
protected by hardware mechanisms and/or signed by
the vendor), 2) every component except the first one
is measured by the previous component in the chain,
and 3) the measurements are performed only once
during the boot process of the VM.
I = {ik : ik ← ik−1}
In the above equation, the left arrow (←) indicates

that the measurement of the kth component ik is
measured by software whose measurement is ik−1.

In light of current CVM offerings, it mainly in-
cludes the virtual BIOS firmware. In the case of Intel
TDX, the hash of the TDX module (MRSEAM) is
also included.

Runtime Measurement. We define runtime mea-
surement as a set of hashes of corresponding software
components where: 1) the first component is mea-
sured by the last component of the initial measure-
ment, and 2) it may yield different values depending
on the software components executed. Notice that,
in this case, the last component represents the set of
processes running in the OS.
R = {ik : rk ← rk−1 and r1 ← iN}
Intel TDX includes four runtime measurement reg-

isters labeled RTMR[0] to RTMR[3]. On the other
hand, AMD SEV-SNP does not include a dedicated
runtime measurement register, and users must rely on
vTPM PCRs.

Nonce. It is designed to prevent replay attacks
by ensuring the freshness of the report. In Intel
TDX and AMD SEV-SNP, nonce is supported by
allowing a user-provided data field to be included in
the attestation report.

Security Version. It is a set of properties in the
attestation report that provides a mechanism allowing
users to verify that the firmware version of the

TABLE I: Generic properties to verify in attestation reports and their technology-specific counterparts (Intel TDX and
AMD SEV-SNP).

Generic Property TDX SEV-SNP
Property Example Property Example

Initial Measurement MRSEAM 64 bytes Not applicable -
MRTD 64 bytes MEASUREMENT 64 bytes

Runtime Measurement RTMR0..3 64 bytes Not available -
Nonce REPORTDATA 64 bytes REPORT DATA 64 bytes

Security Version
TEE TCB SVN 3.0.6 LAUNCH TCB 3.209.20.0
TEE TCB SVN2 3.0.7 CURRENT TCB 3.209.20.0

CPUSVN 6.6.2.2.3.1.0.3 Not applicable -
Security Settings ATTRIBUTES {DEBUG: 0, ...} POLICY {DEBUG: 0, ...}
Custom settings XFAM {..., AVX512: 1, ...} PLATFORM {..., SIMD: 1, ...}

platform is up-to-date. Each update of the security
version is associated with a new encryption key.

In the case of Intel TDX, the security version
comprises the version of the Intel TDX module and
the microcode version. In the case of AMD SEV-SNP,
it comprises the version of the secure processor’s
firmware version.

Security Settings. Security settings affect the se-
curity of the CVM as they may allow the hypervisor
to read the private memory of the CVM. Therefore, it
must be ensured that these settings match the desired
values. In Intel TDX, ATTRIBUTES.DEBUG is set
to 1 when the VM is in debug mode. For AMD SEV-
SNP, this is indicated in POLICY.DEBUG flag.

Custom Settings. We group some vendor-specific
hardware features as custom settings. In Intel, the
flags in the XFAM property, and in AMD SEV-SNP,
the flags of the PLATFORM property are considered
part of this generic property.

B. Attestation Properties Verification

Existing documentation from CPU vendors and
cloud providers does not clarify how to verify the
attestation properties. Through our empirical evalu-
ation and analysis of the CVM services, we have
formulated the following guidelines to perform such
verification.

Verifying Measurements. To verify measurements
(i.e., initial measurement and runtime measurement),
an expected value for each property should be pre-
calculated. To pre-calculate a measurement, the fol-
lowing steps can be followed:

1) List the exact software and non-software com-
ponents that contributed to computing a partic-
ular measurement with the help of an event-
log (e.g., Confidential Computing Eventlog or
CCEL).

2) Obtain source code and build parameters of
each software component.

3) Build the software components to obtain their
binaries.

4) Replay all the components in the same order
as in the eventlog to compute the expected
measurement.

Example III.1. Suppose, the CCEL contains
2 events with the IMR field set to 1. The
first event corresponds to the plaintext file
grub.cfg and the second event corresponds
to the GRUB binary, core.img. Then, the user
can compute the expected value for RTMR1 as
H(H(grub.cfg)||H(core.img)). Here, H()
represents the SHA-384 hash function and ||
represents a string concatenation.

It is to be noted that users may need to contact
their cloud providers to obtain some of these settings.
For example, in building the Intel TDX module
(software corresponding to the MRSEAM value) three
parameters must be known. These are BUILD_DATE,
BUILD_NUM, and UPDATE_VER. According to our
evaluations, these parameters are currently not made
available and access to obtain them using the Intel
ABI is denied for the guest CVM.

Verifying Security Versions. Security version in-
formation can be collected from the CPU vendors.
For example, Intel provides an API [8] to retrieve
the status of software versions through HTTPS re-
quests. These APIs can be utilized to ensure that the
security versions are up-to-date. On the other hand,
AMD publishes a list containing all the firmware
updates [6]. However, the list from AMD does not
contain the complete TCB information.

Verifying Security Settings. Security settings can
be verified by ensuring that any feature that negatively
affects security (e.g., Debug) is not enabled.

Verifying Custom Settings. These properties can
be verified against pre-computed values based on
the presence or absence of reported vulnerabilities
and performance trade-offs. For example, if AVX2

or AVX512 is enabled on a platform, it may be
vulnerable to Gather Data Sampling (GDS) [4] if the
relevant microcode update is not applied. The user
must carefully decide if the mitigation is necessary
as it may affect performance.

IV. MISSING SECURITY ASPECTS

This section focuses on security aspects missing
from existing Intel TDX CVM services.

A. Malicious Applications Injection

Currently, no cloud provider is providing a CVM
image that covers the verification of all the processes
running on a VM. This missing security aspect opens
the door to the injection of malicious applications.
For example, an attacker with privileged access to
the bare-metal server may replace an application
scheduled to be launched at startup with a malicious
version.

To solve this issue, a naı̈ve solution could be
modifying the Linux IMA to extend a runtime
measurement register with application measurements.
However, simply extending a runtime measurement
register with application measurements may lead to
the failure of the remote attestation even when there
are no malicious applications (i.e., it may lead to false
positives). This may be due to a temporary file created
by an application at a late stage of the boot process
or during runtime. To solve this problem, we propose
an algorithm (Algorithm 1) that searches for a match
against a pre-calculated measurement within the IMA
measurement list. Thus a failure to find a match can
confirm the presence of an injected application.

B. Issues in Cloud TDX CVM Services

Among the cloud providers offering CVM services,
we have performed hands-on evaluations of TDX
offerings by Google, Azure, and Alibaba. We exclude
Amazon Web Services (AWS) from our evaluation as
they do not provide any TDX CVM service. CVM
services are usually made available in three stages:
private preview, public preview, and commercial. We
started our evaluation with a private preview of TDX
on GCP (Google has now made a public preview
of TDX available). We have also evaluated TDX on
Azure in its public preview. TDX on Alibaba Cloud
is available commercially (i.e., no longer in a preview
stage). In our evaluation, we have found several
critical aspects missing. We list them in Table II. In
the following, we detail these missing features:

1) TDCALL Allowed. TDCALL is the instruction
to interface with the Intel TDX ABI. While it

Algorithm 1: Pre-caluclated measurement
search and match algorithm
Data: Pre-calculated measurement (M), IMA

measurement list (L)
Result: Confirmation of whether M can be

formulated from the application
template hashes within L

Initialize m to SHA-384 hash of 48 bytes of
zeros;

for each record r in L do
t← template hash in r;
if it is the first record then

m← m||t;
else

m← SHA-384 hash of m||t;
end
if M == m then

return match;
end

end
return failure;

TABLE II: Missing features in public cloud TDX confiden-
tial VM offering. The symbols (-) and (•) mean unavailable
and available, respectively.

Feature Azure Alibaba GCP
TDCALL Allowed - • •

Reproducible Measurements - - -
Custom Image - • -

Open-source Firmware - - -
vTPM Open-source - - -

Opensource Attestation - - •
Firmware Security Version - - -

is allowed in GCP and Alibaba, Azure blocks
the calls.

2) Reproducible Measurements. Necessary infor-
mation required for reproducing the measure-
ments is not made available, leaving the user
unable to verify the integrity of the software.

3) Custom Image. The cloud providers currently
support only built-in images for CVM creation.
Therefore, users are unable to use their own
custom images.

4) Open-source Firmware. As part of the process
to launch a VM, the BIOS firmware is provided
by the cloud. Currently, there is no documen-
tation on which firmware is deployed and how
to access the source code.

5) Open-source vTPM. The process for remote
attestation of the vTPM is not documented, and
the vTPM source code is not made public.

Allocate 2^L bytes of buffer using kmalloc

Translate Virtual to GPA with virt2phys

Alignment, A = 64B
Size, S = 48B

M = Max (A, S)
N = Log2(M)
L = Ceil(N)

Invoke TDCALL

Yes RAX is 0?Success

Load GPRs as per Intel ABI: RAX{2},
RCX{GPA(Buffer)}, RDX{RTMR Indx.}

Error/WarningNo

Fig. 2: The flowchart of the procedure for interacting with
TDX hardware and firmware using the TDCALL instruction
(updating RTMR as an example).

6) Firmware Security Version. Microcode and
source code of the firmware are not released
by specific security versions.

V. IMPLEMENTATION AND EVALUATION

We implemented our solution to detect malicious
applications. Our implementation is divided into two
steps as follows:

A. Interfacing with Intel ABI

Figure 2 illustrates our formulated steps for in-
teracting with Intel TDX components. Intel specifies
the TDCALL instruction for this purpose. The TD-
CALL instruction requires memory allocation before
its invocation. The allocated memory has a minimum
size requirement and must be aligned to a specified
number. Moreover, users must specify the guest phys-
ical address (GPA) instead of the virtual address. The
need for GPA led us to adopt a kernel-module-based
approach instead of a user-space program. However,
even with a kernel module, a challenge remains: to
guarantee aligned memory. In the Linux kernel devel-
opment library, no function explicitly allows memory
alignment by a given number. To this end, we exploit

int64_t extend_rtmr(char*
runtime_measurement){

void *buf = kzalloc(64, GFP_KERNEL);
int64_t execresult = 0;

for(int i = 0; i < 48; i++)
((char)buf+i) = *(runtime_measurement+
i);

phys_addr_t gpa_buf;
gpa_buf = virt_to_phys(buf);
asm("movq $2, %%rax;" //Extend RTMR
"movq %[pbuf], %%rcx;" //Measurement

buffer
"movq $2, %%rdx;" //RTMR[2]
"tdcall;"
"movq %%rax, %[eresult];" //Success?
: [eresult] "=r"(execresult) : [pbuf] "r"

(gpa_buf) :);
kfree(buf);
return execresult;

}

Listing 1: Prototype implementation of the function to
extend a runtime measurement register from IMA.

the fact that the kmalloc function is guaranteed
to allocate memory aligned to the allocation bytes
when the allocation bytes is an integer power of 2.
Therefore, we choose a number greater between the
alignment size and allocation size and then choose
the smallest power of 2 greater than or equal to
that number as the allocation bytes. This way, we
guarantee that the buffer will always satisfy both
the allocation size and alignment requirements. We
then use the virt2phys function to obtain the
GPA. Finally, as mentioned in Intel ABI, the relevant
registers are loaded with the addresses and constants
before the TDCALL instruction is invoked. We have
implemented the process to extend RTMRs in two
ways: 1) a kernel module and 2) modified IMA code
in Linux kernel.

B. Modifying the Linux IMA

Extending RTMR. To extend RTMR with
application measurements from IMA, we added
a function named extend_rtmr (Listing 1) in
security/integrity/ima/ima_queue.c
and issued a call to that function from
ima_add_template_entry function to our
extend_rtmr function by passing the digest
as a parameter. The extend_rtmr function copies
the digest to its buffer to satisfy the memory
alignment requirements of Intel ABI.

We tested our software to extend RTMR on GCP
and Alibaba. Alibaba’s default CVM comes with
binutils version 2.35, which does not support TD-

CALL instruction. After updating binutils to version
2.42, our driver containing the new TDCALL in-
struction could be compiled. It is to be noted that
the minimum binutils version supporting TDCALL
is 2.36.

Producing Appropriate Template. The Linux
kernel currently in use by the CVM services (v6.5)
is hardcoded to output template hash in SHA-1 in
the measurement list. This hindered our ability to
verify application measurements. To overcome this
limitation, we modified the IMA to output the tem-
plate hash in the algorithm chosen by the user. So, for
TDX, our modified kernel can appropriately produce
the template hash in SHA-384. All our modifications
to the Linux IMA will be made available on our
public GitHub repository.

C. Experimental Evaluation

We experimentally evaluated our modification of
the Linux kernel and the application measurement
verification algorithm.

Experimental Settings. These experiments were
carried out on GCP with a machine type of
c3-standard-4. Experiments were performed for
different settings of the ima_policy kernel pa-
rameter. This is because IMA policies determine
which files or components will be included in the
measurement. Thus, the number of times our added
code gets executed for different IMA policies will
vary. We repeated each experiment 30 times.

IMA Modification. To evaluate whether the IMA
modification adds any significant overhead in terms
of startup completion time, we performed a series
of experiments. As our kernel modification is on the
IMA subsystem, we used the IMA startup time as our
metric. Specifically, we considered the timestamp of
the last message from IMA in the dmesg ring buffer
as the IMA startup completion time. We performed
these experiments for both the unmodified and mod-
ified kernel. Our experimental findings are illustrated
in Figure 3, where it is clear that the modified kernel
does not have significantly more overhead than the
unmodified kernel.

Application Measurement Verification. We eval-
uate our application measurement verification algo-
rithm at runtime of the CVM after boot is completed.
Table III illustrates the results. Here, Num_entry
means the number of applications measured, and
Exec_time means the amount of time taken to
match the pre-calculated measurement with measure-
ment computed from the application measurements
in the ascii_runtime_measurement list.

default tcb appraise_tcb
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
(s

)

Unmodified kernel
Modified kernel

Fig. 3: Comparison of startup completion time between
the unmodified and our modified Linux kernel for different
IMA policies shows that our modification does not add any
significant overhead.

IMA Policy Num entry Exec time (s)
default 1 0.017

tcb 1978 0.022
appraise tcb 2005 0.022

TABLE III: Application measurement verification times

VI. RELATED WORK

In this section, we review the literature related to
confidential computing.

A. Confidential Computing Concepts

An overview of TEE technologies is given by
Lacoste et al. [15]. They briefly compare Intel SGX,
Intel TDX, and AMD SEV-SNP, followed by a
discussion of various aspects, such as benefits and
attacks/vulnerabilities. Cheng et al. [10] provides a
detailed discussion of the Intel TDX technology. A
discussion of various architectural aspects of both
SEV-SNP and TDX can be found in [14]. Guanciale
et al. [12] compare confidential computing technolo-
gies from four silicon providers: Intel, AMD, ARM,
and IBM. They provide an overview of each confi-
dential computing platform followed by comparison,
use case, and open research problems. However, none
of the aforementioned works focus on the difficulty
of configuring and verifying attestation properties
essential for the security of CVMs as we do.

B. Remote Attestation

Intel Trust Authority [1] is a quote verification
service from Intel that works in two modes: pass-
port mode and background check mode. Using their
service, users still need to supply policies that leave
them with the problems our paper solves. Therefore,
our work is complementary to that of Intel Trust

Authority. Moreover, it works only for Intel TDX
and cannot be used as a verifier for other TEE solu-
tions. Additionally, although the research community
agrees to trust standardized hardware from a vendor
with open specifications (e.g., Intel or AMD CPUs
supporting hardware TEE features), they find it less
reasonable to trust a remotely hosted internet-facing
service to do a complete verification [9]. Our work
can help users develop their own verifier.

Haidong et al. [13] describe trust authority-client
as a tool to perform runtime measurements. Opera [9]
proposes a remote attestation mechanism where users
of TEEs can verify attestation quotes by themselves.
Keylime [17] utilizes trusted computing to scale
trust services that would otherwise be provided by
slow hardware TPMs. It combines TPM and IMA
to facilitate remote attestation focusing on runtime
integrity. TRIGLAV [16] proposes remote attestation
of virtual machines intending to ensure runtime in-
tegrity. It extends the threat model of confidential
computing by considering the possibility of CVMs
being compromised at runtime.

VII. CONCLUSION

In this work, we have investigated the latest in-
novation in the confidential computing ecosystem,
namely, Confidential Virtual Machines (CVM) from
a security perspective. Our investigation shows that
the CVM technology is complex, insufficiently docu-
mented, and incompletely adopted. The results are
complex and incomplete services that are not yet
ready to deliver the desired protection to the users. To
address these issues, our approach is twofold: firstly,
we develop a generic set of attestation properties
and provide guidelines on their usage to verify the
authenticity of CVMs. Secondly, we identify and
report gaps in the current services. Specifically, we
identify a potential feasible attack on current Intel
TDX CVM services. We provide an algorithm to
detect this attack and through experimental evaluation
of our implementations, we show that our solution
does not add any significant overhead. Our future goal
will be to use AI techniques to mine vulnerabilities
from CVE databases and warn the users if any of
those vulnerabilities affect their custom settings.

ACKNOWLEDGMENT

This work has been financed through the Secure
and Scalable Identity Provisioning (SSIP) project,
a collaboration between Hewlett Packard Enterprise
Brazil and the EMBRAPII unit UFCG-CEEI (Univer-
sidade Federal de Campina Grande) with the incen-

tive of the Informatics Law (Law 8.248 from October
23rd, 1991).

REFERENCES

[1] Intel® trust authority. https://docs.trustauthority.intel.com/
main/articles/introduction.html. [Online; accessed 05-Sep-
2024].

[2] Trusted platform module (TPM). https:
//trustedcomputinggroup.org/resource/trusted-platform-
module-tpm-summary/, 2008. [Online; accessed 05-Sep-
2024].

[3] Strengthening VM isolation with integrity protection and
more. https://www.amd.com/system/files/TechDocs/SEV-
SNP-strengthening-vm-isolation-with-integrity-protection-
and-more.pdf, 2020. [Online; accessed 24-Sep-2024].

[4] Gather data sampling (GDS) vulnerability.
https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/technical-
documentation/gather-data-sampling.html, 2023. [Online;
accessed 01-Sep-2024].

[5] Intel trust domain extensions. https://www.intel.com/content/
dam/develop/external/us/en/documents/tdx-whitepaper-
final9-17.pdf, 2023. [Online; accessed 24-Sep-2024].

[6] Secure Encrypted Virtualization (SEV). https://www.amd.
com/en/developer/sev.html, 2023. [Online; accessed 3-Sep-
2024].

[7] Distribution of intel and amd x86 cpus. https:
//www.statista.com/statistics/735904/worldwide-x86-intel-
amd-market-share/, 2024. [Online; accessed 24-Sep-2024].

[8] Get TDX TCB info. https://api.portal.trustedservices.intel.
com/content/documentation.html, 2024. [Online; accessed
25-Sep-2024].

[9] Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. Opera:
Open remote attestation for intel’s secure enclaves. In ACM
SIGSAC, pages 2317–2331, 2019.

[10] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman
Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus Franke,
and James Bottomley. Intel TDX demystified: A top-down
approach. arXiv preprint arXiv:2303.15540, 2023.

[11] Christophe de Dinechin. Confidential computing
platform-specific details. https://www.redhat.com/en/
blog/confidential-computing-platform-specific-details, 2023.
[Online; accessed 24-Sep-2024].

[12] Roberto Guanciale, Nicolae Paladi, and Arash Vahidi.
Sok: Confidential quartet-comparison of platforms for
virtualization-based confidential computing. In SEED, pages
109–120. IEEE, 2022.

[13] Xia Haidong, Lu Ken, Ying Ruoyu, Dong Xiaocheng, and
Zhao Yanhui. Runtime integrity measurement and attestation
in a trust domain. https://www.intel.com/content/www/us/
en/developer/articles/community/runtime-integrity-measure-
and-attest-trust-domain.html, 2023. [Online; accessed
29-Aug-2024].

[14] Kevin Kollenda. General overview of amd sev-snp and intel
tdx.

[15] Marc Lacoste and Vincent Lefebvre. Trusted execution envi-
ronments for telecoms: Strengths, weaknesses, opportunities,
and threats. IEEE Security & Privacy, 2023.

[16] Wojciech Ozga, Christof Fetzer, et al. Triglav: Remote
attestation of the virtual machine’s runtime integrity in public
clouds. In CLOUD, pages 1–12. IEEE, 2021.

[17] Nabil Schear, Patrick T Cable, Thomas M Moyer, Bryan
Richard, and Robert Rudd. Bootstrapping and maintaining
trust in the cloud. In ACSAC, pages 65–77, 2016.

[18] Huzaifa Sidhpurwala. How to use the linux kernel’s integrity
measurement architecture. https://www.redhat.com/en/blog/
how-use-linux-kernels-integrity-measurement-architecture,
2020. [Online; accessed 24-Sep-2024].

